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Abstract - In this paper, we present concepts in artificial neural networks (ANN) to help detect intrusion 
attacks against network computers, and introduce and compare a multi-layer perceptron ANN (MLPANN) with 
Snort, an open-source tool for intrusion detection systems (IDS). To conduct these comparison experiments, 
we inserted malicious traffic into the MLPANN to train our ANN, with results indicating that our ANN detected 
99% of these input attacks. 
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1 - Introduction

Currently, computer systems are routinely 
hacked by bots [4], viruses or other harmful 
entities, as evidenced by much research on attack 
incidences and their consequences. These attacks 
cause a loss of billions of dollars worldwide 
annually. The propagation of malware is always 
aided by unpatched systems, or users who click 
on any link that represents their mailbox. In the 
coming years, we will witness a great explosion of 
internet access by other devices such as televisions, 
cell phones and others electronic devices. With 
internet commerce becoming more common, it is 
expected that criminal activity will increase. 

Detecting attacks against computer systems 
is an arduous task; it was better studied when 
Snort [2] was developed and its source code was 
distributed. Since then, many features of Snort 
have been improved and other concepts have 
been incorporated.  The neural network (NN), also 

known as and referred to herein as an artificial 
neural network (ANN), is a viable alternative to 
detecting such attacks. In this paper, we report 
our usage of the multi-layer perceptron algorithm 
to detect three types of network attacks and Snort 
to compare among these attacks. [7].

This paper is divided into eight sections as 
follows: Section 2 covers the basic concepts 
concerning the three presented attack types; 
Section 3 explains the multi-layer perceptron, 
and how we collected data to input into our 
ANN; Section 4 covers how we trained our ANN; 
Sections 5 and 6 detail how the algorithm was 
implemented; Section 7 explains how the results 
were obtained; and Section 8 presents the 
conclusion of our research.

 2 – Preliminary Concepts

To collect the data that facilitated the training 
of our NN, we chose three types of attacks:
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 2.1 – Ping of death
This attack type sends a malicious or malformed 

packet to a computer. Normally, a ping packet 
is 64 bytes long. In 1996, attackers began to 
take advantage of the packet size feature when 
they discovered that a packet broken down into 
fragments could add up to more than the allotted 
65,536 bytes. Many operating systems were 
stymied upon receiving an oversized packet, and 
thus froze, crashed, or rebooted. 

Although, sending a packet larger than 65.535 
bytes is illegal according the RFC 791[3], this bug 
is relatively easy to exploit. The fragmentation 
method is used to send a packet of such large size 
that when the target computer reassembles this 
kind of packet, a buffer overflow may occur. This 
exploitation affects various systems, including 
UNIX, Linux, Mac, Windows, and routers. 

The solution for this situation is to check for 
each incoming IP fragment, making sure that the 
sum of the ‘Fragment Offset’ and ‘Total Length’ 
fields in the IP header of each IP fragment is 
smaller than 65.535 bytes. If the sum is larger, 
then the fragment is dropped or ignored. This 
check is performed by some firewalls, to protect 
hosts that do not have the bug fixed. 

2.2 – Brute Force Attacks on Port 22
The secure shell (SSH) service became the 

most popular to access remote machines. It is 
easy to use, as there are many clients available 
to any modern operating system and, above all, 
the SSH has a strong policy to authenticate users 
and to protect traffic data. Moreover, SSH is the 
point used by hackers to gain access to systems 
with weak policies on passwords, whereby a false 
assurance is provided if the administrators do not 
care about this kind of problem.      

Despite the fact that SSH allows alternative 
ways to authenticate remote access, it is possible 
to use a certificate or simply type in the ‘user/
password’ phrases. Traditionally, the facility 
chooses and configures the  user/password 
phrase. However, weak passwords are subject 
to guessing and to brute force attacks. The 

strength of a password is a function of its length, 
complexity, and randomness; to avoid selecting 
a weak password the administrators must work 
within these constraints. Users tend, however, to 
choose relatively weak passwords for purposes of 
easy memorization.

2.3 – SCAN Xmas TREE 
A common first step is recognizing the remote 

operating system. A basic approach to this 
endeavor uses a port scanner to send malformed 
packets to target machines. There are various 
types of scanning, including TCP Scanning, UDP 
Scanning, ACK Scanning, and e-Window Scanning. 
According to the answers received, the attacker 
draws their own conclusion about open ports, 
kernel versions, operating systems, and other 
information that is necessary to initiate an 
attack.

The possible answers include: 

 - Open or Accepted: The host sent a reply 
indicating that a service is listening on the port. 

 - Closed or Denied, or Not Listening: The host 
sent a reply indicating that connections will be 
denied to the port.

 - Filtered, Dropped or Blocked: There was no 
reply from the host.

The Xmas Tree Scan was first used in 1999, 
when the computers could not handle packets 
with flags FIN, URG and PUSH sets which caused 
Windows Operating Systems to crash.   

3 – Multi-Layer Perceptron

3.1 – Neural Network Concepts

An ANN is a computing architecture inspired 
from natural biological information processing 
features.[5][6]

ANNs are made up of processing units 
connected by communication channels that have 
multiplicative gains (weights). A signal into an 
input is multiplied by one weight and added to 
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other signals, the total sum of which is applied 
to a generally non-linear activation function to 
calculate the output of each neuron. 

The ANN can be used in interconnected layers, 
and one of its more important properties is its 
intrinsic learning capacity. During supervised 
learning, examples of input-output pairs are 
presented to the network that adapts its internal 
weights to approximate the desired mapping.

The Multi-Layer Perceptron has at least one 
‘hidden layer’ of neurons, whose outputs are 
kept isolated and not fed into other neurons. 
These hidden neurons do not have, in principle a 
‘desired output’ from examples, but rather utilize 
a well-known optimization technique known as 
the backpropagation rule, which allows weight 
adjustments to occur.

No reliable rules exist to determine the number 
and size of the hidden layers; this is usually 
accomplished by trial-and-error, with the user 
trying to find the smallest network that provides 
optimal performance.

Presentation of examples and weight correction 
measures through the back-propagation 
algorithms continue until a stop criterion is 
attained. Stop criterion usually employ a target 
value for the mean-square error over the training 
data.

3.2 – Collecting Data

To train our neural network, the first task 
is to collect data. An important concern in this 
phase is to present unbiased data to the network. 
Data capture was done using tcdump, a packet 
decoder installed in most Unix and Linux systems. 
The normalization of these data is necessary to 
input data to the ANN presented herein, and was 
accomplished with a dnsi that formats the fields 
shown in Table 1. 

During normalization, the data are collected 
and we try to input parameters as varied as 
possible so as not to incur the mistake of letting 
our network tendentious, and consequently harm 

the proof concept. Various private IP addresses 
for classes A (10.0.0.0/8), B (172.17.0.0/16) and 
C (192.168.0.0/16) were used as input.

The fields used as input for our ANN correspond 
to the fields in the tcpdump format:protocol, 
source IP address, source port, destination IP 
address, destination port, TCP flag, and packet 
length.

Table 1 
Input Data in the Neural Network

Name DescriptioN moDificatioN

Protocol

Define the 
Protocol : tcP, 

UDP e icMP

WithoUt

Modifications

SoUrce_iP ADDreSS of SoUrce 
iP

converteD to 
logArithMic ScAle

DeStinAtion_iP ADDreSS of 
DeStinAtion iP

converteD to 
logArithMic ScAle

SoUrce_Port SoUrce Port
converteD to 

logArithMic ScAle

DeStinAtion_Port DeStinAtion Port
converteD to 

logArithMic ScAle

flAgS
flAgS USeD by 
tcP Protocol

WithoUt 
MoDificAtionS

length
length of iP 

PAcket

converteD to 
logArithMic ScAle

The Nmap scanner [9] was used to genarate 
traffic. Source and destination ports were varied 
randomly.

4– Network Training

Supervised training through the 
backpropagation algorithm has two main steps:

1 - Data presentation and calculation of network 
output.

2 - Error calculation and weight changes 
according to a gradient-descent technique for 
optimization:
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Figure 1: Two steps of backpropagation algorithm

The data were arranged in two sets, as is usual 
in ANN training. These sets included the training 
set, containing 7,000 examples of traffic variables, 
both for normal traffic and during an attack. Each 
example is composed of seven variables (Table 1) 
and a desired output (0 for normal traffic, 1 for 
attack). A second set (the test set) is composed of 
5,000 other traffic variable examples that will not be 
used to adapt the ANN weights, but only to evaluate 
its performance and generalization capacity.

Initially, the archives were preprocessed for the 
backpropagation algorithm used in the MLANN . 
In this way, were created four archives in the Excel 
format:

- Input Matrix - Training: 7,000 x 7 dimension

- Input Matrix - Validation: 5,000 x 7 dimension

Each input matrix has a desired output (class), 
and the preparation of these matrices is described 
hereinafter:

 - Output Matrix - Training: the output layer will 
consist of one node, which is responsible for 
warning of a network attack (output 1), or if 
the network traffic is normal (output 0). Thus, 
the output dimension will be 7,000 x 1.

File output Neural net output
0 normal traffic
1 net under attack

 - Output Matrix - Validation: is the same 
described procedure for the Output Matrix 

- Training, described above, but the matrix 
dimension will be of 5,000 x 1.

After the training of these archives, we will 
obtain four matrices that will store the prepared 
values for developing the ANN.  

We used the MATLAB programming language to 
develop the ANN, where the original files, previously 
described were treated for the ANN's entry.

The logarithmic normalization procedure derives 
values between 0 and 1. However, because the 
trained ANN cannot assume this exact value range, 
we modified the exit matrices range to be between 
0.1 and 0.9, whereby an exit value of ‘1’ is changed to 
0.9, and that of ‘0’ becomes 0.1. The final treatment 
of these files was accomplished in Excel.

5 – Development of the Algorithm in 
Matlab Language

The ANN's architecture was defined as follows:

1 – The Input Layer has seven responsible 
neurons for receiving the input elements 
(patterns) of the ANN; 

2 – The Output Layer has one neuron, responsible 
for showing the response of the ANN;

3 – The Hidden Layer was examined initially 
with three neurons, but simulations were 
conducted with four neurons.

Given seven input variables, the network 
output calls for seven input neurons in the first 
layer, one hidden layer whose size is varied after 
each training, and one output layer with a single 
neuron, indicating the network architecture.

Figure 2: Weights Generated in the Backpropagation Net.
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Therefore, we describe the ANN as the design 
above (Table 2) with m=7 and one neuron in the 
exit and the Hidden Layer neurons (initially three).

6 – Simulations Results

As stated previously, we initially examined the 
hidden layer with three neurons obtaining the 
results presented in tables 2 – 5.

Table 2 
Learning rate equal 0.3 and 3 neurons in the hidden layer

Learning 
rate

Number of 
epochs

Neurons in 
the hidden 

layer

Training 
error

Validation 
error

0.3 100 3 0.1889 0.1932
0.3 300 3 0.0906 0.0892

0.3 500 3 0.0311 0.0372

0.3 700 3 0.0869 0.0956

Table 3 
Learning rate equal 0.3 and 3 neurons in the hidden layer. 

Learning 
rate

Number 
of epochs

Neurons in 
the hidden 

layer

Training 
error

Validation 
error

0.15 100 3 0.1849 0.1892
0.15 300 3 0.0786 0.0824
0.15 500 3 0.0669 0.0676
0.15 700 3 0.0109 0.0168

Table 4 
Learning rate equal 0.15 and 3 neurons in the hidden layer.

Learning 
rate

Number 
of epochs

Neurons in 
the hidden 

layer

Training 
error

Validation 
error

0.3 100 4 0.1026 0.1056
0.3 300 4 0.0691 0.0696
0.3 500 4 0.0557 0.0564
0.3 700 4 0.0669 0.0684

Table 5 
Learning rate equal 0.3 and 4 neurons in the hidden layer.

Learning 
rate

Number 
of epochs

Neurons in 
the hidden 

layer

Training 
error

Validation 
error

0.15 100 4 0.1066 0.1108
0.15 300 4 0.0766 0.0792
0.15 500 4 0.0686 0.0704
0.15 700 4 0.0683 0.0712

7 – Conclusion

The need for continuous improvements in 
device security motivates new alternatives for 
identifying computer network attacks. The use 
of ANNs for implementing network security is 
an attractive alternative to other common and 
less effective anti-attack methods. Based on the 
signatures of Snort [2], we established malicious 
packages for assembly of the ANN training files. 
Our results indicated a 99% success rate for 
recognizing potential attack code. 

Commercial applications require supplementary 
input parameters, such as a package timestamp 
and package payload, among others. The 
diversification of the examples is another factor 
to consider to improve the training of the ANN. 
Nonetheless, we consider our 

99% success rate to be a highly promising 
framework for developing future ANNs against 
malicious traffic.
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