
www.IJoFCS.org

The International Journal of
FORENSIC COMPUTER SCIENCE

IJoFCS (2008) 1, 70-74

Abstract - In this paper, we present concepts in artificial neural networks (ANN) to help detect intrusion
attacks against network computers, and introduce and compare a multi-layer perceptron ANN (MLPANN) with
Snort, an open-source tool for intrusion detection systems (IDS). To conduct these comparison experiments,
we inserted malicious traffic into the MLPANN to train our ANN, with results indicating that our ANN detected
99% of these input attacks.

Keywords - Networking, TCP/IP, Neural Networking, Multilayer Perceptron, Intrusion Detection Systems.

Detecting Attacks to Computer Networks Using a Multi-Layer
Perceptron Artificial Neural Network

Dino M. Amaral, Genival Araújo, and Alexandre Romariz

1 - Introduction

Currently, computer systems are routinely
hacked by bots [4], viruses or other harmful
entities, as evidenced by much research on attack
incidences and their consequences. These attacks
cause a loss of billions of dollars worldwide
annually. The propagation of malware is always
aided by unpatched systems, or users who click
on any link that represents their mailbox. In the
coming years, we will witness a great explosion of
internet access by other devices such as televisions,
cell phones and others electronic devices. With
internet commerce becoming more common, it is
expected that criminal activity will increase.

Detecting attacks against computer systems
is an arduous task; it was better studied when
Snort [2] was developed and its source code was
distributed. Since then, many features of Snort
have been improved and other concepts have
been incorporated. The neural network (NN), also

known as and referred to herein as an artificial
neural network (ANN), is a viable alternative to
detecting such attacks. In this paper, we report
our usage of the multi-layer perceptron algorithm
to detect three types of network attacks and Snort
to compare among these attacks. [7].

This paper is divided into eight sections as
follows: Section 2 covers the basic concepts
concerning the three presented attack types;
Section 3 explains the multi-layer perceptron,
and how we collected data to input into our
ANN; Section 4 covers how we trained our ANN;
Sections 5 and 6 detail how the algorithm was
implemented; Section 7 explains how the results
were obtained; and Section 8 presents the
conclusion of our research.

 2 – Preliminary Concepts

To collect the data that facilitated the training
of our NN, we chose three types of attacks:

71 D. Amaral et. al

 2.1 – Ping of death
This attack type sends a malicious or malformed

packet to a computer. Normally, a ping packet
is 64 bytes long. In 1996, attackers began to
take advantage of the packet size feature when
they discovered that a packet broken down into
fragments could add up to more than the allotted
65,536 bytes. Many operating systems were
stymied upon receiving an oversized packet, and
thus froze, crashed, or rebooted.

Although, sending a packet larger than 65.535
bytes is illegal according the RFC 791[3], this bug
is relatively easy to exploit. The fragmentation
method is used to send a packet of such large size
that when the target computer reassembles this
kind of packet, a buffer overflow may occur. This
exploitation affects various systems, including
UNIX, Linux, Mac, Windows, and routers.

The solution for this situation is to check for
each incoming IP fragment, making sure that the
sum of the ‘Fragment Offset’ and ‘Total Length’
fields in the IP header of each IP fragment is
smaller than 65.535 bytes. If the sum is larger,
then the fragment is dropped or ignored. This
check is performed by some firewalls, to protect
hosts that do not have the bug fixed.

2.2 – Brute Force Attacks on Port 22
The secure shell (SSH) service became the

most popular to access remote machines. It is
easy to use, as there are many clients available
to any modern operating system and, above all,
the SSH has a strong policy to authenticate users
and to protect traffic data. Moreover, SSH is the
point used by hackers to gain access to systems
with weak policies on passwords, whereby a false
assurance is provided if the administrators do not
care about this kind of problem.

Despite the fact that SSH allows alternative
ways to authenticate remote access, it is possible
to use a certificate or simply type in the ‘user/
password’ phrases. Traditionally, the facility
chooses and configures the user/password
phrase. However, weak passwords are subject
to guessing and to brute force attacks. The

strength of a password is a function of its length,
complexity, and randomness; to avoid selecting
a weak password the administrators must work
within these constraints. Users tend, however, to
choose relatively weak passwords for purposes of
easy memorization.

2.3 – SCAN Xmas TREE
A common first step is recognizing the remote

operating system. A basic approach to this
endeavor uses a port scanner to send malformed
packets to target machines. There are various
types of scanning, including TCP Scanning, UDP
Scanning, ACK Scanning, and e-Window Scanning.
According to the answers received, the attacker
draws their own conclusion about open ports,
kernel versions, operating systems, and other
information that is necessary to initiate an
attack.

The possible answers include:

 - Open or Accepted: The host sent a reply
indicating that a service is listening on the port.

 - Closed or Denied, or Not Listening: The host
sent a reply indicating that connections will be
denied to the port.

 - Filtered, Dropped or Blocked: There was no
reply from the host.

The Xmas Tree Scan was first used in 1999,
when the computers could not handle packets
with flags FIN, URG and PUSH sets which caused
Windows Operating Systems to crash.

3 – Multi-Layer Perceptron

3.1 – Neural Network Concepts

An ANN is a computing architecture inspired
from natural biological information processing
features.[5][6]

ANNs are made up of processing units
connected by communication channels that have
multiplicative gains (weights). A signal into an
input is multiplied by one weight and added to

72 Detecting Attacks to Computer Networks Using a Multi-layer

other signals, the total sum of which is applied
to a generally non-linear activation function to
calculate the output of each neuron.

The ANN can be used in interconnected layers,
and one of its more important properties is its
intrinsic learning capacity. During supervised
learning, examples of input-output pairs are
presented to the network that adapts its internal
weights to approximate the desired mapping.

The Multi-Layer Perceptron has at least one
‘hidden layer’ of neurons, whose outputs are
kept isolated and not fed into other neurons.
These hidden neurons do not have, in principle a
‘desired output’ from examples, but rather utilize
a well-known optimization technique known as
the backpropagation rule, which allows weight
adjustments to occur.

No reliable rules exist to determine the number
and size of the hidden layers; this is usually
accomplished by trial-and-error, with the user
trying to find the smallest network that provides
optimal performance.

Presentation of examples and weight correction
measures through the back-propagation
algorithms continue until a stop criterion is
attained. Stop criterion usually employ a target
value for the mean-square error over the training
data.

3.2 – Collecting Data

To train our neural network, the first task
is to collect data. An important concern in this
phase is to present unbiased data to the network.
Data capture was done using tcdump, a packet
decoder installed in most Unix and Linux systems.
The normalization of these data is necessary to
input data to the ANN presented herein, and was
accomplished with a dnsi that formats the fields
shown in Table 1.

During normalization, the data are collected
and we try to input parameters as varied as
possible so as not to incur the mistake of letting
our network tendentious, and consequently harm

the proof concept. Various private IP addresses
for classes A (10.0.0.0/8), B (172.17.0.0/16) and
C (192.168.0.0/16) were used as input.

The fields used as input for our ANN correspond
to the fields in the tcpdump format:protocol,
source IP address, source port, destination IP
address, destination port, TCP flag, and packet
length.

Table 1
Input Data in the Neural Network

Name DescriptioN moDificatioN

Protocol

Define the
Protocol : tcP,

UDP e icMP

WithoUt

Modifications

SoUrce_iP ADDreSS of SoUrce
iP

converteD to
logArithMic ScAle

DeStinAtion_iP ADDreSS of
DeStinAtion iP

converteD to
logArithMic ScAle

SoUrce_Port SoUrce Port
converteD to

logArithMic ScAle

DeStinAtion_Port DeStinAtion Port
converteD to

logArithMic ScAle

flAgS
flAgS USeD by
tcP Protocol

WithoUt
MoDificAtionS

length
length of iP

PAcket

converteD to
logArithMic ScAle

The Nmap scanner [9] was used to genarate
traffic. Source and destination ports were varied
randomly.

4– Network Training

Supervised training through the
backpropagation algorithm has two main steps:

1 - Data presentation and calculation of network
output.

2 - Error calculation and weight changes
according to a gradient-descent technique for
optimization:

73 D. Amaral et. al

Figure 1: Two steps of backpropagation algorithm

The data were arranged in two sets, as is usual
in ANN training. These sets included the training
set, containing 7,000 examples of traffic variables,
both for normal traffic and during an attack. Each
example is composed of seven variables (Table 1)
and a desired output (0 for normal traffic, 1 for
attack). A second set (the test set) is composed of
5,000 other traffic variable examples that will not be
used to adapt the ANN weights, but only to evaluate
its performance and generalization capacity.

Initially, the archives were preprocessed for the
backpropagation algorithm used in the MLANN .
In this way, were created four archives in the Excel
format:

- Input Matrix - Training: 7,000 x 7 dimension

- Input Matrix - Validation: 5,000 x 7 dimension

Each input matrix has a desired output (class),
and the preparation of these matrices is described
hereinafter:

 - Output Matrix - Training: the output layer will
consist of one node, which is responsible for
warning of a network attack (output 1), or if
the network traffic is normal (output 0). Thus,
the output dimension will be 7,000 x 1.

File output Neural net output
0 normal traffic
1 net under attack

 - Output Matrix - Validation: is the same
described procedure for the Output Matrix

- Training, described above, but the matrix
dimension will be of 5,000 x 1.

After the training of these archives, we will
obtain four matrices that will store the prepared
values for developing the ANN.

We used the MATLAB programming language to
develop the ANN, where the original files, previously
described were treated for the ANN's entry.

The logarithmic normalization procedure derives
values between 0 and 1. However, because the
trained ANN cannot assume this exact value range,
we modified the exit matrices range to be between
0.1 and 0.9, whereby an exit value of ‘1’ is changed to
0.9, and that of ‘0’ becomes 0.1. The final treatment
of these files was accomplished in Excel.

5 – Development of the Algorithm in
Matlab Language

The ANN's architecture was defined as follows:

1 – The Input Layer has seven responsible
neurons for receiving the input elements
(patterns) of the ANN;

2 – The Output Layer has one neuron, responsible
for showing the response of the ANN;

3 – The Hidden Layer was examined initially
with three neurons, but simulations were
conducted with four neurons.

Given seven input variables, the network
output calls for seven input neurons in the first
layer, one hidden layer whose size is varied after
each training, and one output layer with a single
neuron, indicating the network architecture.

Figure 2: Weights Generated in the Backpropagation Net.

74 Detecting Attacks to Computer Networks Using a Multi-layer

Therefore, we describe the ANN as the design
above (Table 2) with m=7 and one neuron in the
exit and the Hidden Layer neurons (initially three).

6 – Simulations Results

As stated previously, we initially examined the
hidden layer with three neurons obtaining the
results presented in tables 2 – 5.

Table 2
Learning rate equal 0.3 and 3 neurons in the hidden layer

Learning
rate

Number of
epochs

Neurons in
the hidden

layer

Training
error

Validation
error

0.3 100 3 0.1889 0.1932
0.3 300 3 0.0906 0.0892

0.3 500 3 0.0311 0.0372

0.3 700 3 0.0869 0.0956

Table 3
Learning rate equal 0.3 and 3 neurons in the hidden layer.

Learning
rate

Number
of epochs

Neurons in
the hidden

layer

Training
error

Validation
error

0.15 100 3 0.1849 0.1892
0.15 300 3 0.0786 0.0824
0.15 500 3 0.0669 0.0676
0.15 700 3 0.0109 0.0168

Table 4
Learning rate equal 0.15 and 3 neurons in the hidden layer.

Learning
rate

Number
of epochs

Neurons in
the hidden

layer

Training
error

Validation
error

0.3 100 4 0.1026 0.1056
0.3 300 4 0.0691 0.0696
0.3 500 4 0.0557 0.0564
0.3 700 4 0.0669 0.0684

Table 5
Learning rate equal 0.3 and 4 neurons in the hidden layer.

Learning
rate

Number
of epochs

Neurons in
the hidden

layer

Training
error

Validation
error

0.15 100 4 0.1066 0.1108
0.15 300 4 0.0766 0.0792
0.15 500 4 0.0686 0.0704
0.15 700 4 0.0683 0.0712

7 – Conclusion

The need for continuous improvements in
device security motivates new alternatives for
identifying computer network attacks. The use
of ANNs for implementing network security is
an attractive alternative to other common and
less effective anti-attack methods. Based on the
signatures of Snort [2], we established malicious
packages for assembly of the ANN training files.
Our results indicated a 99% success rate for
recognizing potential attack code.

Commercial applications require supplementary
input parameters, such as a package timestamp
and package payload, among others. The
diversification of the examples is another factor
to consider to improve the training of the ANN.
Nonetheless, we consider our

99% success rate to be a highly promising
framework for developing future ANNs against
malicious traffic.

References

http://www.denunciar.org.br/twiki/bin/view/SaferNet/[1]
Noticia20070704035010
 http://www.snort.org[2]
http://www.rfc.org[3]
B. Saha and A. Gairola. "Botnet: An Overivew". CERT-In White [4]
Paper, CIWP-2005-05, June 2005
Haykin S. - "Redes Neurais Princípios e Práticas", Editora [5]
Bookman, 2001.
Braga, A. P., Carvalho A. C. P. L. F. e Ludemir T. B. - "Redes [6]
Neurais Artificiais", Editora LTC, 2000.
ROCHA, D. L. - "Utilização de um ambiente de honeynet no [7]
treinamento de redes neurais artificiais para detecção de intrusão",
ENE-FT UnB, 2006.
http://www.vmware.com[8]
http://www.insecure.org/nmap.[9]

